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INTRODUCT ION

The PLATO Air Force Base Computer-Based Education (PLATO AFB CBE)

project at Chanute adopted the mastery learning technique in their 34

lessons and set the mastery criterion at 80% correct on the end of

lesson test. They used the performance result of each criterion-

referenced test (CRT) in two different ways: (1) for assessing the

individual performance, and (2) for evaluation, or more precisely within

Chanute's context, lesson evaluation.

The adoption of a criterion-referenced testing approach to evaluation

raises two measurement issues that have relatively less importance in norm-

referenced testing. The issues are (1) definition of mastery, and (2) a

priori standards. These issues still remain unsolved, but are receiving

increasing attention. A large number of articles relating to this subject

have been published, but the many definitions of mastery are by no means

equivalent. The concerns of these articles are limited to the use of

criterion-referenced testing for individual assessment, i.e., judging

whether or not a given student has mastered a given instruction to be

learned to some suitable level of mastery (Block, 1971; Emrick, 1971;

Millman, 1973; Besel, 1971; Novick & Lewis, 1974; Roudabush,1974; Huynh,

1976; Linn,1977).

One purpose of this paper is to examine the appropriateness of the use

of CRTs as a mean of controlling an individual student's advancement to

the next level of instruction or retainment in the current unit of

instruction in the PLATO AFB CBE Program (or project) at Chanute.

Our other purpose in this paper is to turn the focus from the aspect
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of individual assessment to that of program evaluation, which requires the

establishment of a criterion rate for validation of a lesson, so that a

lesson would be considered validated if the percentage of failure rate at

the end of the lesson was less than the criterion.

Although there is a mathematical duality in both aspects of criterion-

referenced testing, it is true that the program evaluation aspect has not

received all the attention that it deserves. One reason for this is that

the results of evaluation may call for expensive revisions in instructional

materials, at least in traditional teaching settings. However, PLATO

provides an ideal situation for program evaluation because revision of

lessons can be done with relatively little trouble and expense.

Therefore, it is important and necessary to explore reliable methods

that will help to improve the quality of CAI lessons.
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CRITERION-REFERENCED TEST AS ASSESSMENT OF PROGRA21 EVALUATION

2.1 Mastery Learning Strategy

Mastery learning strategies have been used in many educational

settings since Bloom (1968) advocated them in the late 1960's. In this new

approach to instruction, a mastery level is set for the material to be

learned so that a majority of the students must attain the criterion level.

Interesting findings about mastery learning strategies were reported

by Carroll (1963), Atkinson (1968) Block (1970), Kim, Hogan, et al.

(1970, 1971) and many others. According to Block (1971), mastery

learning allowed 75-90% of students to achieve the same level as the top

25% of students in usually achieved with typical grouped instructional

methods such as in regular class rooms.

A similar study by Kim et al. (1970, 1971) showed that 72% of

approximately 5800 students in foreign language classes achieved a mastery

criterion of 807 correct on final tests under the mastery condition while

only 28% of the traditional condition achieved this level. The high

percentage of students achieving criterion in the mastery condition shows

the effectiveness of this strategy of instruction. However, these results

may also be due partly to the quality of lessons given to the students

durinp the experiment, or r',aR even be due to the kinds of tests that were

given to the students in order to examine the degree of mastery achievei in

the instructional unit to be learned. We may be able to say that the high

quality lessons produce a higher percentage of success than do low quality

lessons if the tests given at the end of the lessons are comparable to one

3



another.

The experienced instructional designer might say that the quality of

instruction may be determined by the appropriateness of instructional cues

and the quality and types of reinforcement given each student, as well as

the amount of participation and practice experienced by each student.

Therefore, determining the quality of instruction is a multidimensional and

complicated task. It is very difficult to measure these factors and develop

a method of setting validation criteria for CAI lessons based on the

quantitative data from such complex variables. Since our concern is to

restrict the discussion to the quantitative method of setting the

validation criterion of a given lesson, we will start examining the

validation criterion that has been used in the army, and the PLATO AFB CBE

Program at Chanute Air Force Base.

2.2 Validation Criterion of Lessons in PLATO AFB CBE Program

The PLATO IV computer-based education system, in development for over

a decade at the University of Illinois, was used in the training program of

Special and General Purpose Vehicle Repairmen at Chanute Air Force Base

(Dallman, 1977). The 37 CAI lessons in the program, comprising almost 30

hours of instruction and 37 tests, are i'Dlemented on the PLATO system

along with a routing program that provides individualized instructional

rianagement. The 37 lessons are homogeneous in subject matter and

tutorial in style tor the most part. They are arranged in mastery

learning fashion, so that students must achieve the mastery level of the

test which was given at the end of each lesson in order to be advanced

4



Table I

Summary of Master Validation Exams in the Chanute PLATO AFB CBE Project

Validation Size of tested % of % of Total # of
a

Lessons M Date out sample Success Failure N Success

103 30 10 June 63 89% 11% 93 83

104a 30 14 April 114 94% 6% 144 134

104b 30 14 April 113 86% 14% 143 124

105 30 14 April 102 88% 12% 132 117

106 30 19 June 33 82% 18% 63 54

201a 30 28 May 99 90% 10% 129 116

201b 30 23 May 109 72% 28% 139 105

202a 30 18 Aug 33 82% 18% 63 54

202b 30 28 May 90 98% 2% 120 115

203a 30 28 May 33 97% 3% 63 59

203b 30 13 June 33 94% 6% 63 58

203c 30 18 Aug 33 91% 9% 63 57

204 30 18 Aug 33 94% 6% 63 58

205a 30 15 Jan 33 79% 21% 63 53

205b 30 15 Jan 33 82% 18% 63 54

206a 30 13 June 90 82% 18% 120 101

206b 30 25 June 65 82% 18% 95 80

206c 30 11 April 118 95% 5% 148 139

207 30 15 Aug 33 91% 9% 63 57

301 30 25 June 109 79% 21% 139 113

304 30 25 June 65 82% 18% 95 80

305 30 18 May 109 96% 4% 139 132

307 30 14 April 130 81% 19% 160 132

308 30 18 May 109 63% 37% 139 96

401 30 17 April 142 83% 17% 172 146

402 30 8 July 65 79% 21% 95 78

403 30 30 June 65 79% 21% 95 78

404 30 2 Sept 33 100% 0% 63 60

aM is the sample size used for establishing validation dates.
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(Table I cont.)

Validation Size of tested %% of % of Total # of

Lessons Ma Date out sample Success Failure N Success

405a 30 26 Aug 33 100% 0% 63 60

405b 30 26 Aug 33 91% 9% 63 57

405c 30 26 Aug 33 94% 6% 63 58

405d 30 2 Sept 33 73% 27% 63 51

406 30 30 June 65 95% 5% 95 89

407 30 22 Sept 33 88% 12% 63 56
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to the next lesson. If the mastery level is not achieved, the student

must repeat the lesson. The 37 tests consist mostly of matching and

multiple-choice items. 'fastery levels are aimed at 80% level,but the

actually used cutoff are somewhere between 75% and 90% of the items

answered correctly. Test lengths vary from 5 to 20 items and the scores

on the first try of each item are summed to yield the total score of

each test. The tests are called lIVE, for Mtaster Validation Exams. For

example, the test at the end of lesson 101 is called HVE01. The

description of their lessons is given in Appendix2.

A less;on is said to be validated when 90% of the students have

achieved the Riven criterion level of 75% - 90% of the items answered

correctly in the first attempt on each master validation exam. The sample

consisted of about 30 students from successive clsses. No major

modifications of lessons were made until all students in the sample

finished the lessons. All lessons were validated according to this

criterion between April and September of 1975. The exact validation dates

of the lessons are shown in Table 1. In order to validate the

validation criterion, the lessons that were said to be validated were

left unchanged during the evaluation period and were tested on more

students who came in after the validation dates were established.

It is interesting to note that only 15 out of 34*lessons achieved the

criterion level of 90% success rate at the end of the evaluation period,

although all lessons are labeled "validated." Indeed, this result can be

expected :ind is not very suprising. The next sections will be devoted for

explaining, the reason.

*The lessons available for the analysis was reduced to 34 from 37.
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2.3 Bayesian-Binomial Model

By applying a sample binomial model to the first 30 subjects with

whom the validation dates were established, we obtain the result that

the probability of failure to meet the validation criterion upon follow-

up testing is 36.3 % . Therefore, 12 out of 34 lessons are predicted to

be failures. Similarly, the posterior distribution of Bayesian binimial

model where beta function was taken as a prior distribution predicts

59. I failure to meet the validation criterion (this calculation was

done by the PLATO version of CADA developed by Mel Novick). In other

words, 20 out of 34 lessons are predicted to miss the validation

criterion. Table 1 shows that 19 lessons havea failure rate greater

ttian 10%, which is very close to the number (20) predicted by the

Bayesian binomial nodel. This fact indicates that it is necessary to

introduce a more accurate validation criterion for lessons. The reader

might wander how the prior distribution was chosen here. It was based

on the belief of the people who participated the PLATO AFB CBE project.

Producing a lesson to be used on the PLATO system is not a simple

task. Hany steps are involved in the completion of a lesson, including

tryout with students and gathering empirical evidence which might indicate

further revision or modification of the lessons. No unique method for

lesson-revision operation, based on the theories of educational psychology

and educational measurement, has been developed for use on the PLATO

vstem. Is signals pointing to the need for revision, some authors choose

to look at "Area Data," which is collected by the computer, and consists of
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elapsed time in the area ( a segment of instruction), number of

questions answered correctly on the first try (Okf's), number of

incorrect responses to questions (no's), number of correct responses to

questions (Ok's), and number of helps requested. Others design and

implement their own data collection routines. These data usually give

lesson authors a very rough idea of the how well their lessons work with

students and indicate the areas where the majority of students had

trouble going through.

Thus, it is possible for a PLATO lesson author to have some degree of

confidence in the quality of his lessons by the time the lesson becomes a

nearly finished product. The degree of his confidence might depend on his

knowledge of teaching strategies or his past experience. If he uses

teaching strategies such as mastery learning, which has been examined by

many researchers and is known to be highly effective, then it is natural to

assume that he would be highly confident of the quality of his lesson. If

an author has substantial experience producing lessons on the PLATO system

and has used them successfully in his class, then his experience will

assure him of the success of his new lesson.

It must be true that lessons in which the author has high

confidence are more likely to produce a higher success rate in a future

use of his lessons. Suppose p is the true probability of success

associated with a given lesson; in other words, p % of students achieve

the mastery level in a population. In general, a Bayesian density

indicates a state of belief about a pareneter, such as p here,

intermediate between the estimate "I know nothing about p" and "I know

the exact value of p."

9



TNo types of densities are used, one being the prior density,

representing beliefs about the parameter before observations are obtained,

and the other being the posterior density, reprensenting beliefs after

seeing the data. In our situation, the task is to infer the value of p

from an observation x. It is clear that p obtained in this way cannot be

exact: that 20 students passed the test out of 25 students is quite a

probable number for lessons with the value of p anywhere between .65 and

.90. But the observation that 80% of students achieved the mastery level

makes p around .8 more likely for the lesson than p around .3, so we should

estimate p as .8 if nothing else is known about the quality of the lessons.

If the author has some information about the lesson, such as that since the

lesson is dealing with a simple introductory task, the value of .8 is

somewhat lower than it should be, then we would be more inclined to think

that the true probability of success associated with the lesson is higher

than .8. If the author has substantial experience in producing high

quality lessons in past years, then his new lesson would be more likely to

be considered to have a higher true probability of success than .8, even

though the observed success rate is .8 in the sample. Therefore, our

estimate of the true probability p depends not only on the observed value

x, but also on what we know about p before observing x.

The previous knowledge can be expressed by a prior density function

f(p) (or, also called a prior probability density function). The product

of f(p) and the likelihood function f(xlp) (i.e., the conditional

probability of x on given p) gives a quantity proportional to the posterior

density function f(plx):

10



f(plx) = f(xlp)f(p)

where f(xlp) is called the model density function instead of likelihood, as

in Bayesian statistics.

The model density is used for inference in traditional statistics, or

sampling theory. It is clear that Bayesian statistics uses more

information than traditional statistics does, i.e.,the prior density

function. Consequently, Bayesian statistics will provide us with more

accurate information, at least mathematically, than traditional statistics

will if a choice of our prior density is the right one. Indeed, it is

possible to demonstrate such an example, especially if the number of

observations is fairly small. But it is true that the model density,

conditional probability of x given p, will have most influence on the

posterior density when the number of observations is large.

A detailed discussion of Bayesian binomial model can be found

elsewhere (Novick and Jackson,1975; Ferguson, T., 1971). We will show

only the Bayesian densities in this paper. If we assume the prior belif

of p follows a beta distribution, then the prior density f(p) is given

by a beta function:

pa- 1 (1 -p) b- 1

f(p) = OSpd., a>O, b>O
B(a,b)

the model density f(xlp) is

pX-l (lp)N-x

f(xlp) =
B(x,N-x-1)

11





2.4 Appropriateness of the Percentage of Success Rate

The rule for establishing validation of a lesson was that 27 of 30

students entering the lesson successively must pass the mastery test

given at the end of the lesson; if this criterion was not met, some

revision of the lesson was carried out. If we consider the 34 lessons

are homogeneous, as Dallman (1977) stated in his paper, the model

density function derived from a sample of size 30 with 27 successful

attempts predicts a 63.7% chance of success for each lesson in future at

the time when the validation date was established.

The corresponding prior density in our situation is obtained from

the validation criterion (which has been used in CBE programs in the

Army (Branson et al. 1975): 27 of 30 achieving criterion level. It was

believed that this rule was adequate to determine the cutoff point for

terminating the process of lesson modification and beginning to gather

data for evaluating the PLATO AFB CBE project at Chanute. The belief

that a 90% rate of success in thirty successive subjects is an adequate

criterion for validating lessons, can be thought of as the prior

condition. Therefore, the same beta-binomial distribution function as

the model density function is taken as a prior density distribution in

this case.

Applying Bayes' theorem to prior and model densities, the posterior

density function is given by beta-binomial function B(53.2, 6.8) with a

mode of .87 and standard deviation of .04. The 50% credibility interval is

given by (.8714, .9244], in which mode .9 and mean .87 are included.

13



In Bayesian statistics, the interval [.8714,.9244] is called a 50%

credibility interval for the ability (or success rate) because the 50% is

the measure of the strenpth of our belief, taking into account our prior

knowled-, and our observation that the student's (or lesson's) ability lies

in that interval. In particular [.87, .92] is a 50% interval between the

25th and 75th percentiles and is called the highest-density region in the

belief, a 50% 1DR. The length of the interval .92 - .87 is called an

interquartile range and is used as a measure of variability of

distribution.

As seen in Table 1, te have further observations made after the

validation dates were established. Let us extend our discussion further.

Table 2 summarizes the results of the Bayesian beta-binomial analysis

for each lesson based on the expanded sample and newly observed success

rate. The model density functions of the lessons given in Table 2 were

derived fron the new sample of size given in column 8 and number of

successes in column 9 of Table 2. The paraneters of prior density, 50% HDR

and probabilities of - lar ,er than or equal to .9 (Prob(vv .9), are Riven in

Table 2. Fron the last colunn of Table 2 we may select the lessons whose

probabilities of being validated lessons are greater than .50. Since all

standard deviations and interquatile ranges are small, i.e., mostly less

than .05, the probability that w is greater than or equal to .85 will be

drastically ;reater.

For example, lesson 105 has Prob( -nr.85 )=.86 while Prob( *ii?.9) = .25.

Therefore, it is recommended that the validation criterion of 90% be

replaced by a Asihtly higher value 92% or so. If we defined the validaton

criterion by a slightly higher success rate, say, 28 out of 30 students

14
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Table 2

Credibility Intervals of Master Validation Exams

by Baysian Binomial Model

Observed
Lessons Score Mean Mode S.D. a b 50% CI P(rr..90)

103 = .892 .89 .89 .03 109.2 13.8 .8744, .9120 .36
93

104a -3-= .931 .93 .93 .02 133.2 10.8 .9157, .9444 .87

104b L- .867 .87 .86 .03 123.2 19.8 .8467, .8851 .08
143

105 17= .886 .89 .88 .03 116.2 15.2 .8665, .9040 .25

106 - = 857 .86 .84 .05 53.2 9.8 .8238, .8842 .10
63

201a -= .899 .90 .89 .03 115.2 13.8 .8800, .9160 .43
129

201b LO5=.755 .75 .75 .04 104.2 34.8 .7280, .7774 .00

202a -1-= .857 .86 .84 .05 53.2 9.8 .8238, .8842 .10
63

202b 115 = .958 .95 .94 .02 141.2 8.8 .9340, .9588 .97
120

203a -L .937 .93 .92 .03 85.2 7.8 .9052, .9425 .74
63

203b mL8 - .921 .92 .91 .04 57.2 5.8 .8959, .9425 .63
63

203c .905 .90 .89 .03 83.2 9.8 .8811, .9228 .47

204 58 921 .92 .91 .04 57.2 5.8 .8959, .9425 .63
63

205a -L3 .841 .86 .85 .04 79.2 13.8 .8337, .8826 .08
63

205b =.857 .86 .84 .05 53.2 9.8 .8238, .8842 .10
63

206a -1 - .842 .85 .85 .03 127.2 22.8 .8324, .8716 .97
120

80
206b - .842 .86 .85 .03 106.2 18.0 .8331, .8758 .05

15



(Table 2 cont'd)
Observed

Lessons Score Mean Mode S.D. a b 50% CI P(Tr>.90)

139
206c 148 .939 .94 .93 .02 138.2 9.8 .9255, .9521 .94

207 -7 = .905 .90 .89 .03 83.2 9.8 .8811, .9228 .47

113

301 13 = .813 .83 .82 .03 139.2 29.8 .8073, .8466 .00

304 -0 = .842 .86 .85 .03 106.2 18.8 .8331, .8758 .04

132
305 f3-9 =,.950 .94 .94 .02 158.2 10.8 .9282, .9528 .96

132307 136- = .826 .84 .83 .03 158.2 31.8 .8175, .8538 .00

308 9--6 = .691 .73 .72 .03 1222.0 46.8 .7020, .7485 .00

146
401 17= .849 .86 .85 .03 172.2 29.8 .8380, .872 .00

402 78 = .821 .84 .83 .03 104.2 20.8 .8160, .8604 .013
95

78 821 .84 83 .03 104.2 20.8 .8160, .8604 013
403 60 92 .94 .93 .03 86.2 6.8 .9174, .9522 .84

404 60= .952 .94 .93 .03 86.2 6.8 .9174, .9522 .84
63

405a 60 = .952 .94 .93 .03 86.2 6.8 .9174, .9522 .84
63

57
405b T .905 .90 .89 .03 83.2 9.8 .8811, .9228 .47

58
405c 63= .921 .92 .91 .04 57.2 15.8 .8959, .9425 .63

51
405d 1 .810 .84 .83 .04 77.2 15.8 .8103, .8622 .02

406 89 = .937 .93 .92 .02 115.2 9.8 .9117, .9431 .8295"""

407 56 = .889 .89 .88 .04 55.2 7.8 .8595, .9137 .31
63

16



achieving the mastery level in a successive sample, then the validation

dates given in column 4 of Table 2 p(w>.9) would be later dates but the

estimation of true probability of success would be much improved.

Lesson 201a has a 90% success rate in an observation of 99 students who

entered the lesson after the validation date, May 28th. This observed

success rate is the same as the validation criterion. It is interesting

to note that the 50% HDR [.88,.916 ] of the new prior density based on

the sample size of 129 is slightly narrower than that of size 30 [.8714,

.9244]. In general, when the number of students increases , the 50% HDR

gets narrower. Also you will notice that the value in the last column

of Table 2 for lesson 201a is .43, which is larger than Prob(ia.9) =

.409 when the sample size is 30. Therefore, our crediblity of saying

that lesson 201a will have a success rate of 90% in the population from

which this sample was drawn will increase if the sample size on which

the model density was based increases.

Hence, setting the most appropriate validation criterion for a lesson

depends on two factors: success rate and sample size. The discussion of

these two factors will be carried mathematically parallel, ,in other words

mathematically dual; taking the sample size as the number of items or the

test length, the success rate as the proportion of getting a correct answer

for an item. In the next chapter, we will switch the focus from the former

that is oriented toward the success rate of a lessonto the latter that is

for the success rate of an individual in a test.

17



CRITERION REFERENCED TEST AS ASSESSMENT OF STUDENTS PERFORHANCE

3.1 Problems in Criterion-Referenced Tests

Criterion-referenced testing has gained much attention from

educational measurement and testing specialists in recent years. The

object of criterion-referenced testing is not to distinguish finely

among subjects, but to classify subjects into mastery and non-mastery

groups. Robert Gleser (1963) stated that the measures of CPTs depend on

an absolute standard of quality while those of NRTs depend on a relative

standard. CRTs are often used in conjunction with instructional

programs that maximize the number of students attaining a given mastery

level and mininize the variability of test scores while norm-referenced

tests (NRTs) are used in selection or screening a subgroup of examinees,

predicting students' future performances, and evaluation of

instructional programs.

The concepts of criterion-referenced testing are quite different

from those of norm-referenced testing. Strictly speaking, the test

scores of NRT are assumed to be distributed normally while those of a

CRT are highly skewed. The variability in scores of a NRT is large

while that of a CRT is small. Although, these differences are generally

expected but need not be observed in practice. Statistical measures in

the classical test theory model, such as reliability and validity, are

defined on the basis of assuminp, that the standard deviation of any NRT

is always positive and adequately large. Therefore, the definition of

reliability as the ratio of true score variance to observed score

18



variance can be a meaningful index there. The reliability tends to

increase as the test length (number of items) increases and hence the

variablity of test scores increases. The test length of a CRT is

usually short, say 10 or 15 items, and often most items of a test are

answered correctly by all students who take the test. Therefore the

reliability of a CRT can't be satisfactorily large. As far as this

author knows, many tests have a(21 reliability of only about 0.5 or

less.

Since it is a common use of criterion-referenced testing that all

students are expected to achieve the level of mastery, say 90% correct, the

observed scores become a bounded variable. If there are subjects with true

scores near the "ceiling" or the "floor", it becomes implausible to assume

that the errors of measurement are distributed independently of true scores

for those near the boundary. NRTs don't usually have ceiling or floor

effects. Their scores are distributed around the mean score and are

seldom near either extreme. In such a test, it is reasonable to assume

that error scores are due to something independent of the subject's true

abilities, such as fatigue, anxiety, etc.

Lord and Novick (1968) argue about the plausible distributional forms

of observed CRT scores and true scores in Chapter 23 of their book,

"Statistical Theories of Mental Test Scores." We will follow their steps

and adopt the binomial error model for CRT scores. The binomial error

model assumes that if each MVE test is aimed at measuring the learning

level of a topic taught in the Vehicle Training Course, then all items in

the test must measure the same task. In other words all items in a test

have one and only one common factor with 0-1 scoring. Suppose there is a
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pool of items measuring the same task, and taking an item out of the pool

is an independent event, that is, answering the earlier items on the test

does not affect the ability of a student to answer later items correctly, then

we can formulate the distribution of raw scores x by a binomial

distribution with parameter 0 in which 9 is the proportion of items that a

student would answer correctly over the entire pool of items. If T is a

fixed true score and e is an error of measurement, then the raw score x can

be expressed by the sum of the two, x = T + e, and 0 is given by

9 = T/n

where n is the number of items in the test. Let h(xIQ) be the binomial

distribution of x at any given true ability level 0, then the conditional

distribution h(xIQ) can be given by

h(xl)=( n )gX(1- 4 )n-x x = O,1,...,n.

where n is the number of items in the test.

It is interesting to note that this model does not pay attention to

item differnces. The traditional measurement indices such as item

difficulty or items discriminating index are not the major concern in

the binomial error model. Rather, finding out how accurately a test can

estimate an examinee's pass or fail status with respect to a given

mastery is a main concern of the model.

Keats and Lord (1962) investigated the relationship between the

distibution of test scores, observed and true scores. The test scores

could be adequately represented by the hyper geometric distibution h(x) with

a negative parameter and the true scores distribution could be represented
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I
by the two parameter beta distribution g(g).

g(9) = ga-1(I-4 )b-n/ B(a,b-n+l)

where a>O and b>n-1. And also

CI 1 a-i1 (l_..)b-n n

h(x) = J X( b-n+ (n) gx(l-)n-xd , x0,1,...,n.SO B (a,b-n+l) x

In classical test theory, the estimation of a true score is given by

regressing the true score T on the observed score x, and the equation is

given by

E(T Ix) f=x + (1-f)ux

where f is the reliability of the test and ux is the mean of test scores.

In binomial error model, the estimation of a true score is given by

similar equation,

E(Tx) =0(21x + (1-" 1 )ux , xO,l,...,n

whereO' 21 is the ratio of number-correct true-score variance to observed-

score variance and is given by

0 2 T ux( n-ux)}

x n nl2

Table 3 is the summary of information from the Mastery Validation Exams
at Chanute.
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Table 3

The Summary of Simple Statistics of Mastery Validation Exams

test mean SD items a2l N

mvel03 7.388 1.124 8 0.6321 85

mvel04a 11.892 0.442 12 0.4910 83

mvelO4b 10.120 1.728 11 0.8018 83

mvel05 7.706 0.737 8 0.5470 85

mve20la 9.474 0.973 10 0.5254 76

mve20lb 8.907 1.325 10 0.4951 86

mve202a 16.186 2.934 20 0.6753 97

mve202b 9.720 0.634 10 0.3573 82

mve204 8.557 1.681 10 0.6253 88

mve205a 6.767 1.558 9 0.3470 90

mve205b 8.110 1.736 10 0.5457 82

mve206a 12.038 1.574 13 0.6942 78

mve206b 15.250 1.619 17 0.4259 80

mve206c 19.257 1.151 20 0.4841 70

mve207 3.761 1.124 5 0.3287 88

mve301 8.727 1.501 10 0.5635 77

mve303 17.380 2.257 20 0.5824 71

mve304 9.209 1.366 10 0.6771 67

mve305 7.458 0.934 8 0.4806 72

mve307 14.683 1.522 16 0.5101 63

mve308 9.037 1.170 10 0.4045 82

mve401 9.254 1.015 10 0.3673 63

mve402 14.138 2.335 17 0.5988 94

mve403 8.095 2.487 10 0.8340 84

mve404 4.254 0.876 5 0.2166 67

mve405a 9.169 1.069 10 0.3701 71

mve405b 8.329 1.991 10 0.7208 70

mve405c 9.087 1.222 10 0.4934 69
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In classical test theory,0( 21 (Kuder-Richardson)) is always smaller

than or equal to the other reliabilty approximations ,such as& 20 and

Cronbach's coefficientOA. BothO( 2 0 andS' 2 1 become equal only when all

items are of equal difficulty (or have equal mean if the scores are

dichotomous, and note thatO(20 would be used in place of°"21 with a

compound binomial model). Coefficient d becomes equal to1 20 if all

items in a test are parallel, that is, all items have the same mean

values and variances in classical test theory. As we previously noted

in this chapter, the binomial error model assumes a single common factor

and is not concerned with differenciating among item characteristics.

The model does not require any information about the item

charactersitics in a test, such as difficulty and discriminating index,

but it does require knowledge of the number of items on a test. It is

interesting to note that the mathematically derived ratio of the true

and observed score variances in the model becomes equal to the

reliability of the test where all items are of equal difficulty and

variance. Therefore the definition of reliability in classical test

theory loses an interesting feature in terms of a traditional sense

because in the binomial error model, the value of the reliability index

is reduced to that of the lowest approximation to the ratio of the true

and observed score variances in classical test theory. Sinceq( 21 is a

special case of reliability approximations when item differences are

ignored, it is exactly what we can expect out of the binomial model.

The conceptualization of reliability is no longer important in the

model. Instead, the accuracy of judging non-mastery and mastery status

of examinees becomes a main concern. Millman states this purpose of CRT
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clearly in his paper (1975), and discusses how many items must be

administered from a given item-pool so that the test items in the domain

answered correctly can give an accurate estimation of an examinee's true

ability 9.

Setting of Mastery Levels

The mastery level of Master Validation Exams (MVE) of the 37

lessons in the Chanute PLATO AFB CBE Program was set at a level of 80%,

although it is impossible to prove that 80% is the most appropiate level

for their program. Block (1972) showed in his experimental study that

attainment of a 95% mastery level maximized student learning of

cognitive tasks in his matrix algebra course, while an 85% level

maximized learning as characterized by affective criteria.

Since Chanute's 37 lessons are designed to be "homogeneous" with

respect to content and teaching style, all lessons are written under the

same principle with the same tutorial logic, although the subject matter in

each lesson is different. Therefore Chanute's lessons are not linearly

related and the content difficulty of the lessons is not hierarchically

ordered as it would be in teaching mathematics, arithmetic, or foreign

languages. If the lessons are linearly related, setting a mastery level

for the earlier instructional units should by higher than those of the

later instructional units. If the goal of the second unit is the

attainment an 85% mastery level, then the mastery level of the first unit

might be 90%, or some other level higher than 85%. Since there is no

analytical technique to provide the optimal level of mastery learning,
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definite statments about the determination of ideal mastery levels cannot

be made at this time. Linn (1978) provides an excellent discussion

of the topic of "setting standards".

Cutoffs

Mastery levels are usually set by instructors or the author of a

lesson, but the decision of mastery and non-mastery is based on examinees'

observed test scores. The score that is used as to decide mastery and non-

mastery is called the "cutoff." Mastery and non-mastery status ought to be

defined on the basis of true ability 9, not observed test scores x that are

subject to measurement errors. If true ability were known, there would be

no incorrect classifications. Unfortunately, true scores are impossible

to obLain in practice, so we have to find a way to minimize

misclassification.

There are four kinds of classifications: I. an examinee's true

ability 9 and observed score x are both higher than a given mastery level

go and cutoff score c, that is A = { x~c and @,o ); 2. 9 is lower than go

and x is also lower than c, that is B = ( x<c and 0<00 };3. 9 is lower than

go, but x is larger than c, F+ = { xzc and 0<9 o }; 4. 9 is higher than Go,

but x is lower than c, F- = ( x<c and 0100 }. The following figure shows

these four conditions.

C 9 - true ability, x = observed score

F_ A go= true mastery level

Go c - observed cutoff

B F+. Probability of these events will be denoted

Figure 1 by P(A),P(B),P(F+) and P(F_) respectively
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Millman (1975), and then Novick & Lewis (1975) reported percent of

students expected to be misclassified for a given cutoff with various

numbers of test items. 11illman used the binomial error model, but Novick

and Lewis used the Bayesian beta binomial error model.

According to Millman's calculations, the percent of students expected

to be misclassified at 80% mastery level using a 10 item test could be as

high as 53%.

Emerick (1972) and Huynh (1976) considered the loss ratio Q of F- to

F+ as a means of controlling misclassification, especially false

advancement. If later instructional units require the knowledge and skill

acquired in earlier units, false advancement will be a problem.

Since F- stands for the event in which a student has really mastered

the given instructional unit but his/her observed score happens to be

lower than the cutoff, retaining such a student in the same unit is not

efficient. If the instructional units are fairly independent from one

to another, as are lessons in the Vehicle Training Program at Chanute

Air Force Base, then an appropriate loss ratio would be 1, or at least

it is not necessary to set it as high as 10.

Huynh (1976) proposed an evaluation of the cutoff score that minimizes

the occurence of misclassifications for a given loss ratio. With his

cutoff score, the loss ratio associated with the probability of having

the false positive to that of false negative stays the same, say 10,

while the linear combination of the probabilities of the both events and

the loss ratio (the average loss) is minimized. We will discuss in more

detail Huynh's method in conjunction with 34 Chanute lessons and their

MVE test scores.
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3.2 Evaluation of the optimal cutoff scores

Huynh derived the optimal cutoff co of a test for a given mastery

level go and loss ratio Q so as to minimize the average loss function R(c)

by differentiating it, where R(c) is the linear combination of the probability

of false positive and false negative and is given by

R(c) = P(F+) + Q P(F-).

c o is the smallest integer such that the incomplete beta function of

1@0(a+co,n+b-co) is smaller than or equal to Q/(l+Q) ; where

0o ) a+Co- 1(1..) n+b- Co- 1

p(co) = Io(a+co , n+b-c o) = d@

B(a+co , n+b-co )

In order to apply Huynh's result to evaluate co, we need the help of a

computer to calculate the values of the incomplete beta function for

c=0,1,2,...n and plot them on paper. The PLATO system eases these steps and

we can obtain the answer through the program "cutoff" written by the

present author and T. Weaver. Figure 2 illustrates the procedure to

determine the optimal cutoff c o . The parameters a and b are obtained

from the mean, standard deviation of the test and the number of items in

the test (denoted by n). Table 4 shows the values of incomplete beta

function 1@0 (i) at each point i=1,2,... n, where a,b are calculated from

test scores of MVE201a by the formula,
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a - (-1+1/ 21) Ux

b = -a-n+n/ 21.

Table 4

Ten points in Figure 2

go ..80, Test=mve20la, a-8.5560 b=0.4753

item a+-i n+b-i IO(a+i,n+b-i)

1 9.556 9.475 0.998
2 10.556 8.475 0.991
3 11.556 7.475 0.969
4 12.556 6.475 0.913
5 13.556 5.475 0.796
6 14.556 4.475 0.608
7 15.556 3.475 0.376
8 16.556 2.475 0.169
9 17.556 1.475 0.045

10 18.556 0.475 0.004

The curve in Figure 2 is obtained by plotting the points in Table 4.

The horizontal lines which are marked by losses 0.5, 1, 1.5, 2,...,20 in

Figure 2 help to evaluate the optimal cutoff which minimizes the average

loss R(c) at co for the partially known loss ratio Q and a given mastery

true level go. Since the contents of all lessons discussed in the

Chanute PLATO AFB CBE Program deal with independent topics across the

lessons and the lessons are not linearly or hierarchically related, a

loss ratio of 1 will be reasonable. Thus, in Figure 2 the smallest

integer value of i for which the curve P(i) goes under the line of loss

ratio I is 7. Therefore co=7 is the ideal cutoff score of the

test, 14VE2Oa.

It is interesting to note that the cutoff score, c=8, actually used

for MVE2Ola in the Chanute training program gives a slightly larger value
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V
of the probability of misclassification of (R(c)=P(F+)+P(F-)) than the

theoretically derived co does, but not for P(F+), probability of false

positive, or P(F-), probability of false negative separately.

c-- nP(F+) - Ig 0(a,b)-(I/B(a,b)) I ( B(a+i,b+n-i)l10oo(a+i,b+n-i )

i=O~i"

P(F_) = (I/B(ab)) I ()B(a+in+b-i)(l-Igo(a+ib+n-i))
i=O "i/

The probabilities of P(A)=Prob{(02o,x c) and P(B)=Prob{Q.<o,<c)

are given respectively by the following formulas:

c-11 n~
P(A) = -I 0 (a,b)+(1/B(a,b)) I B(a+i,n+b-i) (I 0(a+i,b+n-i)-I)

i=O00

c-i ,n
P(B) = (1/B(a,b)) B(a+i,b+n-i)Io (a+i,b+n-i)

The probability of each misclassification for all available NVEs

were calculated and summerized in Table 5.

Since the sum of the probabilities A, B, F+, and F- is 1, the sum of

the probabilities of A and B must have a maximum value at co where

P(F+)+P(F-) reaches the minimum as shown in Figure 3.

In Figure 3, the curve of P(F+)+ P(F-)(the lower curve drawn * is)

decreases slowly until it reaches the bottom at co, then increases as

the number of items increases while the curve of P(A)+ P(B)(the upper

curve drawn with + is) reaches the maximum point at co.
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Table 5 indicates that the actually used cutoff scores c produce

higher probabilities of P(F+ or F-) than the theoretically determined

cutoff Cos except in a few cases. Since the theoretical cutoffs are

determined so as to minimize the average loss R(c), in our case the sum

of probabilities of false negative F- and false postive F+, all values

in column 5 of Table 5, P(F+)+ P(F-) have smaller values for co than for

c. The sum of the probability of A and F+ is the expected success rate

, so this sum matches the observed success rate given in the last column

fairly well.

The probability of each misclassification for all available MVEs

were calculated and summerized in Table 5.

Since the sum of the probabilities A, B, F+, and F- is 1, the sum of

the probabilities of A and B must have a maximum value at co where

P(F+)+P(F-) reaches the minimum as shown in Figure 3.

In Figure 3, the curve of P(F+)+ P(F-)(the lower curve drawn * is)

decreases slowly until it reaches the bottom at co, then increases as

the number of items increases while the curve of P(A)+ P(B)(the upper

curve drawn with + is) reaches the maximum point at co.

If co were used as cutoffs for NVE test scores, only 12 lessons would

not have a probability of observed success less than .90, which was used

as the lesson validation criterion in the PLATO AFB CBE program, while

18 lessons have values in P(A)+P(F+)(i.e. p(x>c)) when c's are used.

Since the probability of false negative, P(F-) stands for the case

that an examinee really mastered the goal of instructional unit but his/her

observed score happened to be lower than the used cutoff c, he/she does not

have to repeat the instruction. If efficiency of training in terms of
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slowly for the smaller K values (No. of items in a test) but starts

dropping rapidly until K reaches K=9 and again slows down. The shape of

the curves varies a quite bit among MVEs and some start dropping rapidly

at around K=7 or 8 for 80% true mastery level. Thus, the loss ratios of

8 and 20 can have the same optimal cutoff for the same true mastery

level. This is due to that the beta binomial model deals with

continuous scores while the real data are discrete.
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VALIDATION OF LESSONS AND CRITERION REFERENCED TESTS

4.1 Predicting the Percentage of Success Rate for the Lesson

Table 7 shows the estimated probability of success in terms of

the proportions of true score to the number of test items, or true ability

level Q. These calculations are based on error free true ability level 0

, so it is more reliable compared to the values obtained in Table 2.,

where values were calculated from the observed scores.

Since P(0>.9), the probability of 90% of the examinees achieving

mastery, was based on the observed success rate and sample size, their

values don't reflect the information from tests, such as test length,

21, mean and standard deviation of a test.

However, the probability P(F+ or A) is derived from unique information

obtained from each test; hence we can consider it more accurate than

P(w ;.9). The lessons which have values larger than .90 for

P(A or F.) and P(A or F+) might not require any further

revision but others might need it. Lessons 105 and 308 probably

won't require any further revision, but 204,207,303,304,402, and 405b

might need revision of lesson or tests in spite of not being recommended

according to the validation criterion that has been used in Chanute

program. The probability of PASS based on the observed scores tends to

provide larger values, so that the validation criterion based on the

probability of true ability level P(A or F -)(i.e. p(aOQo)) will be more

plausible standards.

It is Important to note that these lessons may not really need

revision; instead, the result may be due to poor test construction. So
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far, the only available technique to measure the quality of lessons is

to examine the result of a CRT given at the end of the lesson. If the

test is constructed very poorly (e.g. MVE 207, with P(F+ or F_) - .2992,

021ffi. 3287), then the measure will be unfair to question the quality of

the lesson. The measure does not distinguish between the test and the

lesson. Thus, the faulty part may be the test and/or any other part or

parts of the lesson. This argument can also be applied to the reverse

situation. Therefore, construction of a good test will be a key point

in judging the quality of a lesson that will be indirectly measured by

this test.

4.2 Validation of Mastery Validation Exams

In the previous chapter, we discussed the optimal cutoff co of a CRT

with respect to Mastery Validation Exams in the PLATO AFB CBE Program at

Chanute Air Force Base.

The evaluacion study of the program, supported by Advanced Research

Program Agency, measured some criterion variables which would be

helpful in conducting a validation study of MVEs. The evaluation study

revealed that a substantial number of examinees were miclassified(Table

6). Since detailed information on the design used in the evaluation

study can be found in Dallman et al. (1977), just a brief description

will be given here.

A 50-item NRT was given at the beginning and end of the eight-week

PLATO AFB CBE Program, which included 37 on-line lessons. The 37 lessons

were divided into four subsets called Blockl, Block2, Block3, and Block4.
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After a student studied and mastered all lessons in a block, he took the

block test; the block test score was counted in his final grade for the

course. He had to take all four block tests, and then a posttest was given

in order to measure the effectiveness of the program. Each block test had

twenty items which were either multiple choice or matching. The

coeeficient alpha reliabilities were not calculated because the tests

were writtten on the PLATO system and the item information was not

collected. ButO( 21 was available in the following chart. Figure 4

gives a flow chart of the testing program.

In order to validate the effectiveness of lessons, four kinds of

correlations were calculated. These correlations are described in the

following paragraphs.

Each Block's test scores were matched with the corresponding Master

Validation Exam scores and the time needed to master the lesson (mastery

time), and their correlations were calculated over the subjects. These

two correlation values of 27 lessons were denoted by r(B,MVEs) and

r(B,time) respectively. Their values are shown in Table 8.

The true gain scores of posttest, x2, from pretest, x, were

estimated by multiple regression procedure; the true score difference

t 2 -tl of the observed score difference x2-xl was regressed on the post-

and pretest scores. It is known that the regression of t 2 -tl onto the

two variables xi and x 2 are the same as regressing t2-tl on the scores

x 2 -xl and the residual score, c2, of x2 on x2-x1 (Tatsuoka, 1975),

because the covariance of x 2 -x I and c 2 equals zero and both x 2 -xl

and c2 are linear combinations of xj and x2.

Therefore, the multiple regression R(t2 -tj1X 2 -xj) will be given
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PRETEST: 50 ITEM NORMED REFERENCED TEST, COEF a 0.40

I 1VE 03

LESS-ON 104a
LESSONS IN BLOCK I

MVE 104a
03,104a, 104b. 105

LESSSON 104b

WVE 104b

LESSON 105

IMVE l05

BLOCK TEST 1: 20 ITEM TEST, 02, - 0.56

LESSON 201o

LVE 201a LESSONS IN BLOCK 2

2010, 20Ib 202b, 204.2050.
205b, 2060. 206b, 206C.207

SBLOCK TEST Z! 20 ITEM TEST, 021 = T.33

~LESSONS IN BLOCK 3

LESSONS IN-BLOCK301, 303, 304, 305, 307, 306

fKCK TEST : 20 ITEM TES T., :o=.4,

LESSONS IN BLOCK 4
401,402,403,404,

SON 5cJ 405a,405b, 405c

WIVE- 405Cp

LOCK TEST 4: 20 ITEM TEST, :21 0.42
, I

POST TEST: THE SAME TEST AS PRETEST, COEF. Q a 0.63

Figure 4

Block diagram of student flow through PLATO-based portion of

Automotive Course
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as the sum of the regression of R( t2-tlI x2-xl) and R(t 2-tlIc 2 ).

R(t 2-tllx 2 , xi) = R(t2-tllx 2 -.cl)+ R(t 2-tllc 2 ).

Note that the regres3ion coefficient of the first term is the

reliability of gain scores and that of the second term is the increment

of multiple R2 . The multiple R is .861, hence the reliability of the

multiple regression gain score is R 2= .7405. The first term, the simple

difference score has the reliability of .1047 , the second term is

.6358.

This estimated gain score has a higher reliability than those of

pretest and posttest separately. This score was correlated with MVE

scores and mastery time. Table 8 shows the result.

The optimal cutoffs that were evaluated in the previous chapter

were divided by number of items in the corresponding Master Validation

Exam. The same operation was used for the difference of the mean from

the observed cutoff c o in each MVE. This value expresses the distance

of c o from the mean in each test. The summary description of these

variables and the correlation matrix are given in Table 9.

The probability of false positive (or advancement), P( F+) has

correlation values of -.562, -.659, .638 with 'nafter', (mean-co)/n, and

P(F- ) (false negative or attainment), respectively. This means that

the misclassification of false advancement tends to occur more often

when the observed cutoff co is closer to the mean. The test which

advances the students to the next lesson more frequently by mistake

tends to retain the students whose true scores are really above the
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Table 8

The correlations of Block tests to HVE scores and mastery time

lesson r(B, MVEs) r(B, time) r(G, MVEs)) r(G. time)

103 .15 -.22 .23 -.38*

104a .38* -.33* .19 -.43*

104b .36* .44*

105 .22 -.08 .20 -.34*

201a .34* .12 .44* -.05

201b .19 -.25 .38* -.40*

202a .17 -.04 .07 -.43*

202b .26 -.03 .28* -.07

204 .21 -.21 .11 -.13

205a .28* -.24 .18 -.32*

205b .25 -.08 .15 -.26

206a .40* -.21 .13 -.22

206b .12 -.04 -.02 -.18

206c .00 -.04 .33* -.08

207 .28* -.17 .25 -.27

301 .04 -.08 -.11 -.06

303 .34 -.21 .08 -.05

304 .38 -.27 .42* -.37

305 .07 -.19 .31* -.26

307 .30* -.23 .41* -.30"

308 .01 .04 .00 -.07

401 .50* -.15 .32* -.21

402 .25 -.14 .46* -.34*

403 .40* -.23 .21 -.02

404 -.02 .00 .02 -.33*

405a .07 .01 .12 -.11

405b .25 -.06 .17 -. 12

405c .37* -.11 .19 -.07

significant at p < .05.
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Table 9

A Correlation Matrix with Summary Description of Variables

Variable Description

1 P(F+) false positive

2 c 0 /n theoretical cutoff divided by number of items

3 a2 l the ratio of true variance to observed variance

4 P(F +) + P(F_) probability of misclassification

5 nafter number of subjects using a lesson after it was
declared to be validated

6 %fail observed percentage of failure in MVE

7 P(-f > .9) Baysian estimate of success rate in the population

8 range maximum mastery time minus minimum mastery time

9 r(G, MVEs) correlation of gain to MVE scores

10 r(G, time) correlation of mastery time to gain

11 r(B, MVEs) correlation of blocktest to MVE scores

12 r(B, Time) correlation of blocktest to mastery time

13 items number of items in a test

14 mean - c
o relative distance of c from the mean, c :observed0 0

n

15 P(F ) false negative

1 2 3 4 5 6 7 8 9 10 11

1 1.000
2 .250 1.000

3 -.006 .358 1.000
4 .931 .393 -.020 1.000
5 -.562 -. 373 .037 -.617 1.000
6 .111 .167 .384 .165 .335 1.000
7 -.211 -. 156 -.347 -.226 -.265 -.903 1.000

8 .265 .621 .213 .345 -.304 .206 -.113 1.000
9 -.283 -. 244 .090 -.264 .271 .032 .053 -.074 1.000

10 .183 -.233 -.259 .054 -.099 -.460 .386 -.414 -.377 1.000

11 -. 199 .051 .324 -.102 .125 .286 -.368 -. 192 .403 -.275 1.000
12 .027 .053 -. 316 -.056 -.133 -.320 .355 -. 120 -.235 .520 -.468

13 -. 108 -.271 .079 -.211 .426 .385 -.339 .070 .231 -. 190 -.034
14 .659 .510 .244 .855 -.489 .408 -.396 .415 -. 119 -. 193 .141
15 .638 .542 .079 .869 -.544 .293 -.281 .417 -.196 -.171 .099

Note. All correlation values were tVansformed by Fisher's Z transformation.
Probabilities were transformed by sin- ().
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(Table 11 cont.)

12 13 14 15

12 1.000
13 -.159 1.000
14 ,.228 -.119 1.000
15 -.176 -.264 .956 1.000
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mastery level. The correlation of -.659 with the variable, the number

of students who studied a lesson after the validation date was set, (If

over 90% of students pass the mastery level of a MVE, then the lesson

was said to be validated.) indicates that the probability P( F+) will be

small if the lessons whose validation date were established at an

earlier date during the period of evaluation study at PLATO program.

This relation is true for the variables P( F+ or F.) and P(F-) because

the correlations of variable nafter with them are -.617 and -.544

respectively. Moreover, P(F+),P(F-) and P(F+ or F.) correlate highly with

variable (mean-co)/n with the values of -.659, -.855, and -.956

respectively. But the correlations between "nafter' and (mean-co)/n is

significant, at -.489. Hence, we cannot state that lessons which were

quickly validated will produce less chance of misclassification. Since

the correlation of (mean-co)/n and nafter is -.489, which is

significantly high, the cutoff co associated with some of these Mastery

Validation Exams might have happened to be chosen closer to the means of

corresponding MVE exams respectively. This fact raises a question about

the properness of the validation criterion that has been used in PLATO

Service Program at Chanute.

A stepwise multiple regression procedure was performed on the

fifteen variables, and three predictors were selected to predict the

variable P(F+or F-). Table 10 gives a summary of the analysis.
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Table 10

Estimation of P(F+) + P(F_) by Stepwise Multiple Regression

variable coefficient S.D. error t

o'21 -. 193 .088 2.193 *
nafter -.205 .098 2.092 *
r(G, time) .144 .089 1.618
(mean-co)/n .829 .102 8.127 **

Multiple R = .9101, constant = .60, F3 ,2 3 = 30.305**

*significant at p<.05 **at p<.Ol

The first predictor (mean-co)/n for the criterion P(F+ or F_),

variable 4 has a beta coefficient of 0.792 and significance test of t-

value 7.9. This result is expected, but entering :ak as the second

predictor in the analysis is surprising. If d.2 I is high enough, then

the probability of P(F+ or F_), occurrence of misclassification, will be

minimized. Most Master Validation Exams have reliabilities of

around .4 to .5 which is quite low, so it is natural to expect that

misclassifications will have occurred quite frequently in the program.

The variableA 2 1 does not correlate significantly with variable 13,

number of items in the tests; it correlates with variable 6, percentage

of failure at the 5% significance level. This relationship may be

interesting to investigate further , especially when the test lengths

are short and about the same containing 10 - 15 items as is customary in

criterion-referenced tests.

The following picture might help for

n ,quick, intuitive grasp of the relationship
ux . . - -i between F+, F- , variables c o, n and ux.

F. The areas of marked F+ and F- depend on

0 0o Ux non ux-co, n-ux.
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Table 11

Relationship between the optimal cutoff co/n and other variables

variable coefficient S.D. error t
1421 .296 .142 2.085 *
range .583 .141 4.135 **

no. of items -.362 .139 2.604 *

Multiple R = .7528 , constant = .56, F3,2 3 = 10.027*

*significant at p<.OS **at p<.01

Table 11 gives the results of a stepwise multiple regression

analysis where the criterion is the optimal cutoff co divided by n.

Entered predictors are variables 8, 13, and 3. t-tests of significance p

for the beta coefficients indicate that all three variables are

significant at p<.05. Since variable 8 is the range of time(the

difference between the maximum time needed and the minimum time), the

longer the time span needed by students to master a lesson, the larger

the ratio of the optimum cutoff to the number of items will be. It

should be noted that the procedure of evaluating the optimal cutoff c

does not depend on the time needed to complete or master a lesson. But,

if c/n is relatively higher, then there is more failure, both F- and

correct failure, B in Figure 5, resulting a larger range in the mastery

time of a lesson. c-C( 21 is again among the predictors and if 21 is

larger, then c/n becomes more affected by it. This analysis needs to be

more refined since a better way to interpret the results should be

found.
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Table 12

Relationship between r(G, MVEs) and other variables

variable beta coefficient S.D. error t
c/n -.336 .181 1.856 x
p(->. 9) .207 .190 1.089
r(G, M/Es) -. 535 .193 2.772 *

Multiple R = .5430 , constant = 0.27, F3,2 3= 3.206 *

*significant at p<.05 x significant at p<.1O

Table 12 shows the results of a similar analysis, using the

correlation of gain scores and Mastery Validation Exam scores as the

criterion. A larger value of this variable means that the gain score

was non-negligibly affected by the Mastery Validaion Exams, which have a

large correlation value r(G,MVEs). We know from Table 10 that MVE

scores of lessons 104b, 201a, 201b, 206c, 304, 305, 307, 401, and 402

have significant values of correlation. This analysis revealed that

correlation of mastery time to gain scores contributes the most

significantly in predicting variable 9. Since mastery time of a lesson

correlates highly with aptitude scores as shown in Table A of the

Apppendix, this result is expected.

The students affected most by the decision of cutoff scores are mediocre

students whose scores are near the cutoffs, and therefore they tend to

be more often misclassified in either the positive or negative way. The

fact that the beta coefficient of variable 2 is -. 336 means that the

smaller the values of co/n, the larger the contribution to the gain will

be; thus mediocre students have a greater chance of repeating the

lessons since the observed cutoff c was set to 30% across all ?IVEs,

which is the true "astery level that was aimed for.
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Table 13

Relationship Between p(-">. 9 ) and other variables.

variable beta coefficient S.D. error t

21 -.152 .178 .854
r(G, MVEs) .224 .185 1.211
r(G, time) .305 .190 1.605
no. of items -. 344 .195 1.966 x
(mean-co)/n .314 .199 1.954 x

Multiple R - .6503 , constant = 1.09, F5 ,2 1 = 3.077 *

*significant at p<.05 x significant at p<.lO

Table 13 shows the results of analysis when the criterion is

variable 9, probability P(e .9) that 90% or more of the students in the

*next page

population from which our sample was drawn will achieve the 80% mastery

level on the end of lesson test. Five predictors among variables 1, 2,

3, 4, 8, 9, 10, 11, 12, 13, 14, and 15 were selected. The variables

nafter and % fail were omitted because P(w>.9) was derived from these

two values in the sample. None of the beta coefficients was

significant, but we might be able to say that P(w>.9) depends to some

extent on the test length (beta=-.344, t=1.97). Also, the distance of

the mean from the observed cutoff co affects the value of p(-f>. 9 ) such

that if the observed cutoff co is considerably smaller than the mean,

then the success rate of the lesson becomes larger. This means that the

test was probably too easy in comparison with other tests. This

analysis result confirms that the validation criterion used at the PLATO

AFB CBE program at Chanute Air Force Base depended excessively on the

test, the characteristics of MVE; hence the method that was used to

assess the quality of lessons was inadequate. There is a great need for
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the development of a method to validate lessons directly, without

depending entirely on the end of lesson tests.
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SUMMARY AND DISCUSSION

The problem of setting a validation criterion for a given lesson is

inportant in practice, but it has never become a focus for educational

researchers, although the closely related topic of criterion referenced

test has been one of the most popular research targets in the past few

years. Both the sample binomial model and the Bayesian binomial model

(beta binomial model) are adopted to set a better validation criterion

for a given lesson and the result from the latter model matched our data

better than did the former. Therefore, the prediction of the future

success rate of the lesson using the Bayesian binomial model is

recommended for setting a validation criterion, when (a) the information

is limited to the percentage of failure (or success) rate on the end of

the lesson test and (b) an author (or instructor) of the lesson has a

certain level of prior belief as to what extent his/her lesson will be

successful. If the scores of a test given at the end of a lesson are

available, then it is recommended to use the information that one can

get from the test performance as much as possible upon setting a

validation criterion of the lesson. Applying the beta binimial model of

criterion-referenced testing, the estimated probability of the observed

score X being larger than the observed cutoff c will be a better

validation criterion than the success rate. In other words, the

probability of mastery, passing the criterion score c will serve as a

validation criterion of the lesson.

Of course, the decision of mastery or non-mastery must

theoretically be based on a student's true performance level and not on
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the observed scores, but the true score will never be available in

practice. But it is possible to estimate the probability of the true

score being greater than or equal to a given true mastery level, say,

80%. Unfortunately, we don't have any analytical method to determine

the best, most suitable true mastery level for a program.

The four kinds of probabilities -- correct pass (A), correct fail

(B), false positive (F+) and false negative (F-) -- were calculated over

27 'fastery Validation Examinations (a) when the observed cutoff c, (80%

correct) and (b) when the optimum cutoff co,which minimizes

misclassification of students, was used. The results indicate that even

if c o were used in the decision process, some tests still show

substantially large numbers of misclassifications of both the false

positive and false negative types. Since it is interesting to

investigate why some tests showed as much as about 20 % of

misclassification while other tests showed very little, three stepwise

multiple regression analyses were used to select the predictors of

P(F+), P(F-), and P(F+ or F-) separately. The common strongest

predictor was the distance of co from the mean of a test, which was what

we expected. The second common predictor was 21, the internal

consistency of a criterion referenced test. As 21 increases to 1, all

three criterion variables get smaller, hence less misclassifications

occur. Tat means the internal consistency of the items in a given test

is important to control false positive and false nec ative errors.

The optimum cutoff co's for Iastery Validation Exams are smaller

, than or equal to the actually used observed cutoff c's in almost all

cases in the PLATO AFB CBE project. Therefore the probabilities of
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false negative associated with co are smaller than or equal to those of

false negative associated with the observed cutoff c. But the

probabilities of false positive associated with co tend to be larger

than those associated with c. Since we set the loss ratio to I in this

case, the total probability of misclassification is always minimized by

using the optimum cutoff co . P(F+) in some test is eight times as large

as P(F-), while in others the former is only a few times larger.

Setting the most appropriate loss ratio will be a problem when Huynh's

method to evaluate the optimum cutoff is adopted. Also, his method is

more sensitive for the smaller loss ratios than larger ones, say Q=0-

20. Our data showed that many Master Validation Examinations of the

end-of-lesson tests had the same optimal cutoff co for loss ratios

between 8 and 20. If his intention was to control the false positive

errors upon the decision of mastery-non mastery for a linearly related

curriculum such as mathematics, then the applicability of the method in

educational settings will be a problem.
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APPENDIX



Table A

Correlations of Aptitude Scores with MVE Scores,

First Completion Time, Mastery Time, and Test Completion Time

First Test
MVE completion Mastery completion

Lesson scores time time time

103 .45 -.39 -.08 -.32

104a .17 -.40 -.38 -.06

104b time data was lost

105 .31 -.42 -.49 --.32

201a .52 .04 -.08 -.32

201b .16 -.42 -.42 -.33

202a .38 -.12 -.25 -.10

202b .34 -.19 -.19 -.42

204 .19 -.16 -.22 -.26

205a .39 -.38 -.45 -,32

205b .47 -.00 -.27 -.20

206a .42 -.03 -.14 -.42*

206b .27 -.25 -.27 -.22

206c .24 .02 -.02 -.40

207 .24 -.23 -.26 -.15

301 .24 -.03 -.13 -.34

303 .10 -.39 -.26 -.19

304 .60 -.14 -.36 -.51

305 .17 -.35 -.36 -.45

307 .52 -.54 -.59 -.57

308 .20 -.00 -.03 -.54

401 .38 -.41 -.41 -.39

402 .47 -.27 -.39 -.39

403 .48 -.24 -.31 .09

404 .10 -.27 -.27 -.32

405a .27 -.15 -.27 .12

405b .05 -.03 -.19 -.05

405c .31 -.11 -.06 .02

£< .05 5



TABLE B

Description of Contents in the Lessons of Chanute

lesson Content

103 Principles of Gas Engine

104a Identification of Parts and Purpose of

I04bi Gasoline Engine Compressor

105 Cooling System

201a Air and Exhaust System

201b]

202a Fundamentals of Electricity

202b Batteries

203a Electrical Schematics

203b

203c)

205a Cranking Motors, DC Charging System

205b AC Charging System

206a

206b. Battery Ignition

206cJ

207 Emission Control

301 Diesel Engines

303 Lighting System

304 Warning System

305 Clutches

307 Basic Hydraulics

308 Fluid Couplings/Torque Converters

401 V-Joints/Propeller Shafts

402 Differentials

403 Transfer Case/PTO

404 Suspension System

405a Hydraulic and Mechanical Brakes

405b Air Brakes

405c Power Assisted Brakes
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